
CDB For Windows
Copyright (C) 1991 by Daytris

All rights reserved

Revised: May 16th, 1991

Table Of Contents

Introduction
Overview

4
Obtaining CDB For Windows 5
Future Enhancements

5
Contacting the Developers

6

Getting Started
Unpacking

7
Sample Application 9

The Network Database Model
Introduction 10
The Relational Model 10
What is the Network Model? 10

The Data Definition Language
Introduction 11
Using sampledb.ddl as an Example 11

prefix
12

connect 12
key

16
DDL Limitations 18

Database Currency
What is Currency? 19
An Example 19

keydba
20

datadba 21
Differences Between Find and Get Function Calls 21
Storing Currency Tables

21
Deleting a current record 22
Updating a current record 23

Database Internals
Client-Server Implementation 24

dbserver.exe 24
dbtalk?.lib 24

Memory Requirements
25

Page 2

database server 25
dbtalk library 26

Database Files 26
File Naming 26
Key File Layout 27
Data File Layout 28

Modifying Internal Definitions 29

Page 3

Utilities
DDLP.EXE

31
DBDLIST.EXE 31

Using the C-API
Introduction 32
Functions by Catagory

32
API Function Descriptions (in alphabetical order) 35

Error Messages
CDB Run-Time Error Messages 120
DDLP Error Messages 122

Page 4

Introduction

Overview
CDB For Windows is a sophisticated database toolkit for Microsoft Windows
programmers. CDB For Windows includes the following features:

- Quick data access through a sophisticated multi-key ISAM
implementation.

- Multiple data models. Both relational and network data models are
implemented in CDB For Windows. The network model gives the
developer the ability to create relationships between records without
storing unique keys in those records.

- Data Definition Language (DDL) for defining database layouts. The
DDL is compiled into a binary format which is used by the database
server as a roadmap. Using this concept, a developer can define and
re-define a database with minimal effort and absolutely no code
changes. The DDL is patterned after C for ease of programming.

- Multiple database access. More than one database can be accessed
concurrently by an application.

- Client-server implementation. When a database is opened, an
instance of the database server executable is loaded and is
responsible for handling all client requests.

- Over 40 predefined database function calls for complete control of
the database.

- Portability. CDB For Windows is written entirely in C for portability and
source code is available. Versions of CDB are also available for MS-
DOS and UNIX platforms. Contact the developers for more
information about these products.

- C++ compatibility. The library is callable from both C and C++.

- Automatic re-use of deleted database space. There is no need for
database reorganization. Deleted space is automatically reused by
CDB For Windows.

- Low overhead. The CDB For Windows database engine requires an
extremely small amount of memory to operate. In the SAMPLE
application included, the database server, when loaded, takes up only
57K of memory.

- Royalty-free distribution rights. Whether you have one customer or
thousands, you pay for CDB just once for each environment that you
are using.

Page 5

Page 6

CDB For Windows follows all of the Microsoft guidelines for appropriate use of
memory under MS-Windows. All memory segment locking and unlocking is on
an "as needed" basis, transparent to the user, and in full compliance with
Windows requirements.

The client-server implementation in CDB For Windows enables multiple
applications to utilize the same database code segments thereby reducing the
memory consumption under MS-Windows.

Obtaining CDB For Windows
Refer to the document included in this release, ORDER.TXT, to order CDB For
Windows. Your purchase will include CDB For Windows libraries, utilities,
royalty-free use of library functions, full library and utility source code and
make files. A printed manual will also be included.

Future Enhancements
Listed below are some of the enhancements planned for CDB For Windows.
Any suggestions would also be greatly appreciated.

- The DBTALK library will become a Dynamic Link Library.

- Mult-application database access. More than one application under MS-
Windows will have the ability to share the same database.

- Multi-user database access. Networks and/or protocols to be supported are
currently undefined.

- Structure Query Language (SQL) interface.

- Performance enhancements.

- OS/2 version.

Page 7

Contacting the Developers
CDB for Windows was developed solely by Daytris. If you have a question
about the product or any suggestions please contact us at the phone number
listed below. Or if you prefer, you can send us electronic mail on any of the
information services listed.

Daytris
81 Bright Street, Suite 1E
Jersey City, NJ 07302
201-200-0018

CompuServe: 72500,1426
BIX: daytris
GEnie: t.fearn

Page 8

Getting Started

Unpacking
CDB For Windows is distributed in self-extracting ZIP files. When you first
unpack your software, you may want to verify that you have a complete set.
If you have the Test Drive version, you should have the files included in
CDBW.EXE. If you have purchased CDB For Windows, you should have the
files included in both CDBW.EXE and CDBWSRC.EXE. The contents of each are
listed below.

CDBW.EXE

File Name Description

CDBW.WRI This document.
ORDER.TXT Order form for CDB For Windows.
REGISTER.TXT Registration form for CDB For Windows.
DBTALKS.LIB Small model DBTALK library.
DBTALKM.LIB Medium model DBTALK library.
DBSERVER.EXE Database server executable.
DBDLIST.EXE Database Definition (DBD) file display utility.
DDLP.EXE Database Definition Language Parser.
SAMPLE.EXE Sample CDB For Windows application.
SAMPLE.C Module for SAMPLE.EXE. Contains WinMain and

setup functions.
SABOUT.C Module for SAMPLE.EXE. Contains functions to

control the About dialog.
SCLIENT.C Module for SAMPLE.EXE. Contains functions to

control the Client dialog.
SADDRESS.C Module for SAMPLE.EXE. Contains functions to

control the Address dialog.
SLISTBOX.C Module for SAMPLE.EXE. Contains functions that

maintain the client and address listbox controls.
SERROR.C Module for SAMPLE.EXE. Contains error handling

functionality.
SAMPLE.MAK SAMPLE make file. Microsoft NMAKE and UNIX

make compatible.
SAMPLE SAMPLE make file. Microsoft

MAKE compatible.
BSAMPLE.MAK SAMPLE make file. Borland MAKE compatible.
BSAMPLE.LNK SAMPLE link response file. Borland MAKE

compatible.
SAMPLE.DEF SAMPLE module-definition file.
SAMPLE.RC SAMPLE resource-script file.
SAMPLE.MNU SAMPLE menu definition file.
SAMPLE.DLG SAMPLE dialog definition file.
SAMPLE.H SAMPLE header file.
SAMPLEDB.DDL SAMPLE data definition language file.
SAMPLEDB.DBD SAMPLE database definition file. Binary.

Page 9

SAMPLEDB.H SAMPLE database header file.
DBMGR.H CDB For Windows header file.

Page 10

CDBWSRC.EXE

File Name Description

DBSERVER.MAK Make file for the database server program,
DBSERVER.EXE. Microsoft NMAKE and UNIX make
compatible.

DBSERVER.DEF DBSERVER module-definition file.
DBSERVER.RC DBSERVER resource-script file.
DBSERVER.C DBSERVER source file.
DBMGR.C .
DBADD.C .
DBUPD.C .
DBDEL.C .
DBFIND.C .
DBGET.C .
DBCURR.C .
DBFILE.C .
DBPAGE.C .
DBSLOT.C .
DBFUNCS.C .
DBLFUNCS.C .
DBMGR.H CDB For Windows header file. Used by

DBSERVER, DBTALK, DDLP, DBDLIST, and client
applications.

DBXTRN.H DBSERVER external definitions header file.
STDINC.H Header file that includes other header files used

in CDB For Windows.
CALLTYPE.H Header file catagorizing CDB For Windows calls.

Used by DBSERVER and DBTALK.
DBTALK.MAK Make file for the DBTALK library. Microsoft NMAKE

and UNIX make compatible.
DBTALK.C DBTALK library source file.
DBCALL.C .
DDLP.MAK Make file for DDLP. Microsoft NMAKE and UNIX

make compatible.
MAIN.C DDLP source file.
DDLP.C .
PARSE.C .
ERROR.C .
DDLP.H DDLP header file.
DBDLIST.MAK Make file for DBDLIST. Microsoft NMAKE and UNIX

make compatible.
DBDLIST.C DBDLIST source file.

Page 11

Sample Application
The sample application, SAMPLE.EXE, included in this release is written in C
and conforms to the user-interface style recommended by Microsoft for
Windows applications.

SAMPLE.EXE is a simple client list program. It is important not for what it can
do, but for what it provides: a template for developing applications that use
the CDB For Windows API.

SAMPLE will help you better understand how to use the API. Full source,
header, module-definition, resource, and make files are provided.

Page 12

The Network Database Model

Introduction
CDB For Windows provides both relational and network model features. The
use of both models in a data design can greatly increase the performance of
your database. For those of you who are already familiar with the relational
database concepts, you will find the network model implementation very
refreshing. For those of you who aren't familiar with the relational model, a
very brief description of relational concepts follows.

The Relational Model
In a relational database, data is stored in a series of tables. Each table
consists of a number of columns, which identify a particular type of data, and
rows, which correspond to a particular record in the table.

Individual records can be retrieved using the key fields defined for the table.
If the developer has the desire to make an association between two tables,
unique key fields must be defined in both records and unique data must be
stored for retrieval to take place.

What is the Network Model?
This model allows you to define relationships between records through
constructs called sets. A set defines a one-to-many relationship between two
tables.

In a relational model, records can only be related (connected) by storing
unique keys in both tables. This method creates additional unwanted
overhead. Duplicate data is stored in both records and duplicate indexes must
be managed.

Using the network model, records are connected by directly storing data
pointers inside the record. Where the relational model requires multiple disk
accesses to locate a related record, the network model allows the record to be
located in a single disk access. Disk space is also saved when sets are used
because no index is required.

Another advantage of using the network model is the flexibility of
owner/member relationships. A record may own multiple record types. A
record may also be owned by multiple owner records. An example of this
would be a 'client' record owning 'invoice' records and also owning 'address'
records. In turn, an 'invoice' could also own 'address' records, perhaps a
shipping and billing address. This kind of flexibility gives the developer the
power to define complex data relationships with relative ease.

Page 13

The Data Definition Language
Introduction

The Data Definition Language is use for defining a database model. The
language is basically a superset of C structure definitions. If you are familiar
with defining C structures, the DDL should be very easy to pick up on.

The DbOpen function call loads a binary image of a DDL file. The binary
image is created by compiling the DDL file into a DBD (Database Definition)
format. A DDL compiler is included with this release, DDLP.EXE (Data
Definition Language Parser).

Using SAMPLEDB.DDL as an Example
The SAMPLE program included with release contains a DDL, SAMPLEDB.DDL.
We will use this DDL as an example.

/* sampledb.ddl */

prefix ABC;

struct client
{
connect address key szStreet;
key long lClientNbr;
key char szName[31];
char szDescription[61];
double dBalance;
};

struct address
{
char szStreet[31];
char szCity[21];
char szState[3];
key char szZip[11];
key char szTelephone[13];
char szFax[13];
};

struct setup
{
key long lNextClientNbr;
};

Page 14

Notice the close resemblence to C structure definitions. The only differences
are the prefix, connect, and key words.

prefix
The prefix is used internally by the database server (DBSERVER.EXE) when a
new database file must be created. In the SAMPLEDB.DDL shown above, the
prefix is "ABC". By defining the prefix as "ABC", we are telling the database
server to use "ABC" as the first 3 characters of any file that is created for the
SAMPLEDB database.

The prefix can be from 1 to 4 characters in length. If a prefix is not defined, a
default prefix, "TEST", is used.

For more information about the CDB For Windows database file naming
conventions, refer to the 'Database File Names' section in this manual.

connect
When using the connect keyword, you are taking advantage of the network
database model implementation of CDB For Windows. Network model
concepts can greatly increase the performance and efficiency of your
database.

The connect keyword defines a relationship between two records.

struct client
{
connect address key szStreet;
.
.
};

In this example, we are defining a relationship between the client record and
the address record. The client record will be an owner of the address record.
The address record is a member of the client record. For now, ignore the 'key
szStreet' part of the connect phrase.

By declaring this set relationship, we now have the capability to make
connections between client and address records using the DbSet... function
calls. A client may own 0, 1 or many address records. Without the network
model concepts that we have just shown you, to make connections between
two records would require the storage of a unique key in each individual
record.

Page 15

void Function(HANDLE hDb)
{
static CLIENT client = {1000L,"Daytris","A software company",0.00};
static ADDRESS address = {"81 Bright Street, Suite 1E","Jersey

City","NJ","07302","201-200-0018",""};

XDbRecordAdd(hDb, "client", &client, sizeof(CLIENT));
XDbRecordAdd(hDb, "address", &address, sizeof(ADDRESS));
DbSetAdd("client", "address");
}

The example above shows how to make a set connection between two records
by using the DbSetAdd function. After the function call, the client "Daytris" is
the owner of 1 address record. This address record can be retrieved using the
DbSetGetFirst or XDbSetGetFirst calls:

XDbSetGetFirst(hDb, "client", "address", &address, sizeof(ADDRESS));

Now lets add another address record to the set:

void Function(HANDLE hDb)
{
long lKey = 1000L;
static ADDRESS address = {"30 Broad Street","New

York","NY","10015","212-555-1212","212-555-1212"};

/* Make client #1000 current */
XDbRecordFindByKey(hDb, "client", &lKey, sizeof(LONG));

/* Add another member */
XDbRecordAdd(hDb, "address", &address, sizeof(ADDRESS));
DbSetAdd("client", "address");
}

The client "Daytris" now owns 2 address records. We can use the
DbSetGetFirst, DbSetGetLast, DbSetGetNext, DbSetGetPrev, or any of the
extended versions of these API calls to retrieve any of the address records in
the set.

Now lets take a look at how the sets are ordered. If we make a DbSetGetFirst
call after adding the sets shown above, which address record would be
returned? Lets return to our original DDL example:

struct client
{
connect address key szStreet;
.
.
};

Page 16

Member records can be ordered two ways. By the order in which they are
added, or by a field in the member record. In our example, the set order is by
the szStreet field in the address record. Therefore, a DbSetGetFirst(hDb,
"client", "address", ...) call would return the "30 Broad Street" address record.
If the connect address phrase were defined without a key:

struct client
{
connect address;
.
.
};

the address members would be stored in the order that they were added.
Therefore, a DbSetGetFirst(hDb, "client", "address", ...) call would return the
"81 Bright Street, Suite 1E" address because this address was added first.

A record can have more than one member. A record can also be owned by
more than one owner. To illustrate this, lets take the SAMPLEDB.DDL and
expand it to include invoicing capabilities.

/* sampledb.ddl - with invoicing */

prefix ABC;

struct client
{
connect address key szStreet;
connect invoice;
key long lClientNbr;
key char szName[31];
char szDescription[61];
double dBalance;
};

struct address
{
char szStreet[31];
char szCity[21];
char szState[3];
key char szZip[11];
key char szTelephone[13];
char szFax[13];
};

Page 17

struct invoice
{
connect address;
connect invoiceline;
key long lInvoiceNbr;
long lDate;
double dTotalPrice;
};

struct invoiceline
{
long lQuantity;
char szDescription[31];
double dUnitPrice;
double dLinePrice;
};

struct setup
{
key long lNextClientNbr;
long lNextInvoiceNbr;
};

In this example, a client record can own multiple address records and multiple
invoice records. This makes sense because a client could have more than one
address, i.e. a shipping and billing address. The client could also have more
than one invoice if more than one order is placed.

Also in this example, an owner/member relationship exists between the
invoice and address records. If our invoice has both 'ship to' and 'bill to'
addresses, the shipping address could be stored as the first member in the set
and the billing address could be stored as the next member.

A variable number of line items could exist on an invoice. This is the reason
for the invoiceline record and its relationship with the invoice. An invoice
record will own its invoice lines.

The following example illustrates how all data pertaining to a specific invoice
might be retrieved. Note: it is suggested that the CDB return values be taken
more seriously than illustrated below.

typedef struct invoice INVOICE;
typedef struct invoiceline INVOICELINE
typedef struct client CLIENT;
typedef struct address ADDRESS;

Page 18

void Function(HANDLE hDb)
{
long lKey = 2000L;
DWORD dwStatus;
INVOICE invoice;
INVOICELINE invoiceline;
CLIENT client;
ADDRESS shipaddress;
ADDRESS billaddress;

/* Get invoice #2000 */
XDbRecordGetByKey(hDb, "invoice", "lInvoiceNbr", &lKey, &sizeof(LONG),

&invoice, sizeof(INVOICE));

/* Get the client that owns the invoice */
XDbSetGetOwner(hDb, "client", "invoice", &client, sizeof(CLIENT));

/* Get the 'ship to' and 'bill to' addresses */
XDbSetGetFirst(hDb, "invoice", "address", &shipaddress,

sizeof(ADDRESS));
XDbSetGetNext(hDb, "invoice", "address", &billaddress,

sizeof(ADDRESS));

/* Retrieve all invoice lines (assuming at least 1 line) */
dwStatus = XDbSetGetFirst(hDb, "invoice", "invoiceline", &invoiceline,

sizeof(INVOICELINE));
while(dwStatus != E_NONEXT)

{
/* Store the line */

/* Get the next line */
dwStatus = XDbSetGetNext(hDb, "invoice", "invoiceline", &invoiceline,

sizeof(INVOICELINE));
}

}

This example illustrates some of the capabilities that you have with set
relationships. The possibilities are endless.

key
The key word is used for defining key fields in records and key fields to be
used in set relationships. See the connect section directly preceding this
section for more details about the key fields in set relationships.

Key fields are stored in ascending order in slots on pages in a key file. The key
file is made up of a series of linked pages.

Page 19

struct client
{
connect address key szStreet;
key long lClientNbr;
char szName[31];
char szDescription[61];
double dBalance;
};

This DDL structure definition contains only one key field, "lClientNbr".
Therefore all pages in the corresponding key file will contain will contain slots
of sorted client numbers.

struct client
{
connect address key szStreet;
key long lClientNbr;
key char szName[31];
char szDescription[61];
double dBalance;
};

The DDL structure definition now contains two key fields, "lClientNbr" and
"szName". Therefore two types of key pages will exist in the key file for this
record type. Some pages will contain slots of sorted client numbers and other
pages will contain slots of sorted client names. The data stored on the key file
pages is directly related to the number of key fields defined in the DDL file.

To maximize the efficiency of your database, it is suggested that you use as
few key fields as possible. The maximum number of key fields allowed in a
record is defined as MAXKEY in DBMGR.H. It is currently set to 8. See
'Modifying the Database Internals' section for more information about MAXKEY.

If a structure is defined without a key field, the only way to access a record of
this type is with a set relationship. The structure defined without a key field
must be a member of another record.

struct client
{
connect address key szStreet;
key long lClientNbr;
key char szName[31];
char szDescription[61];
double dBalance;
};

Page 20

struct address
{
char szStreet[31];
char szCity[21];
char szState[3];
char szZip[11];
char szTelephone[13];
char szFax[13];
};

In this example, the address record contains no key fields. Therefore, the
address record cannot be accessed using any DbRecord... function calls
because these functions require a key field as a parameter. However, the
address is a member of the client record. Therefore, it could be accessed with
the DbSetGet... function calls, provided a relationship exists.

DDL Limitations
The Data Definition Language does not currently support the definition of
structures or unions defined from within a structure. Example:

struct client
{
struct address addr;
key long lClientNbr;
key char szName[31];
char szDescription[61];
double dBalance;
};

These deficiencies will be supported in a later release of CDB For Windows. A
way to get around this problem for now is to allocate enough space as a char
field for the structure or union that could not be included. Example (assuming
the address structure length is 92 bytes):

struct client
{
char addr[92];
key long lClientNbr;
key char szName[31];
char szDescription[61];
double dBalance;
};

After DDLP compilation, modify the C header file output by DDLP to include
the proper structure definition.

Page 21

Database Currency

What is Currency?
Currency refers to the record position in a database key file. It is very similiar
to the file pointer in an open file. For example, when you first open a file using
the C run-time library "open" function, the file pointer points to the first byte
in the file (it could point to the last byte depending on how its opened). After
the file is open, you can seek to different positions in the file and read or write
data. The file pointer position is kept internally by the operating system. You
could think of this position as the current position or "currency".

In CDB For Windows, the concepts are very similar. Each record structure
defined in a DDL will have an associated currency table when this database is
opened.

An Example:
/* sampledb.ddl */

prefix ABC;

struct client
{
connect address key szStreet;
key long lClientNbr;
key char szName[31];
char szDescription[61];
double dBalance;
};

struct address
{
char szStreet[31];
char szCity[21];
char szState[3];
key char szZip[11];
key char szTelephone[13];
char szFax[13];
};

struct setup
{
key long lNextClientNbr;
};

Page 22

When this database is opened using DbOpen, 3 currency tables will be
initialized to zero. One for each record type: 'client', 'address', and 'setup'.
The currency table contains the following format:

struct currency_index
{
struct

{
UINT page;
UINT slot;
} keydba[MAXKEY]; /* Array of key dba's */

ULONG datadba; /* Data database address */
};

keydba

The currency table consists of two parts; a key currency (keydba) and a data
record currency (datadba). A keydba exists for each key defined in the record
table. In the example defined above, the 'client' record would use the first
two keydba structures in the currency_index table for key currency storage.
Records that do not have any keys defined would not make use of the keydba
part of the currency_index.

Lets say that we have three 'client' records in our database. The contents of
each are as follows:

Record 1: 1000L,"Daytris","Software Development",0.00
Record 2: 1001L,"Microsoft","Software Development",10000.00
Record 3: 1002L,"CompuServe","Computer Services",100.00

When the database is opened, the currency_index for the 'client' record, as
well as all other records, is null. In other words, "the client record does not
have currency". If we were to issue a:

DbRecordFindNext(hDb, "client", "lClientNbr");

at this time, an E_NONEXT return value would result. There is no next record
to find! However, if we were to issue a:

DbRecordFindFirst(hDb, "client", "lClientNbr");

the return value would be 0L indicating a successful call. After this call, the
keydba structure within the currency_index for the 'client' record would
contain the appropriate page and slot number of the first record for the
"lClientNbr" index. In this case, the keydba[0] structure within the 'client'
currency_index would point to client number 1000L, Daytris.

Page 23

If we were to now issue a:

DbRecrordFindNext(hDb, "client", "lClientNbr");

the keydba[0] structure within the 'client' currency_index would point to the
next client sorted by "lClientNbr". In our example, it would point to 1001L,
Microsoft.

Keep in mind that we are not retrieving any records, we are only setting
currency for the 'client' record type. If we would want to retrieve a record, we
would use the DbRecordGet... function calls. Using the DbRecordFind...
function calls we can essentially "seek" to positions within the database based
on any index field within a record type.

datadba

The datadba field in the currency_index is used for "set" currency. When we
issue a DbSetFind.. function call, the datadba is used to locate the current set
record. The datadba field contains the actual slot number of the current
record. "Next" and "previous" set pointers are stored at the beginning of each
data slot in a data file.

Differences Between Find and Get Function Calls
The DbRecordFind... and DbSetFind... function calls only set currency for a
specific record type. They do not retrieve records. You may wish to think of
the Find function calls as performing the same task as the C run-time lseek
function. Essentially, we are seeking to a position in the database.

If you wish to retrieve a record, use the DbRecordGet... or the DbSetGet...
function calls. Note: The DbRecordGet... and DbSetGet... function calls call
their Find counterparts first, and then retrieve the current record. For
example, the DbRecordGetFirst function will perform a DbRecordFindFirst and
then a DbRecordGetCurrent function call.

Storing Currency Tables
You can retrieve a copy of the current currency_index for each record defined
in the DDL. Why would you want to do this?

Lets suppose that you have a database that contains hundreds of 'client'
records. Your application must be able to display these 'client' records in a
small window, but you don't have enough memory to keep all of the 'client'
records resident. Or it may be a waste of memory to do so. This is where
storing currency tables becomes necessary.

As previously explained, each record type defined in a DDL has an associated
currency table. The contents of a currency table can be retrieved or updated
at any time. Therefore, in the example explained above, we could retrieve a

Page 24

window of 'client' records along with their associated currency_index tables.
Example:

Page 25

DWORD GetWindowOfClients(HANDLE hDb, BOOL bFirstTime)
{
register short i;
DWORD dwStatus;
struct currency_index currency;

for(i=0 ; i<WINDOW_LINES ; i++)
{
/* Get the record */
if(bFirstTime)

{
bFirstTime = FALSE;
dwStatus = XDbRecordGetFirst(hDb, "client", "lClientNbr", &client,

sizeof(CLIENT));
}

else
dwStatus = XDbRecordGetNext(hDb, "client", "lClientNbr", &client,

sizeof(CLIENT));
if(dwStatus)

return dwStatus;

/* Get the currency table */
dwStatus = XDbRecordGetCurrency(hDb, "client", ¤cy,

sizeof(struct currency_index));

/* Put the record in a window and store along with it the associated
currency table */

}
}

After calling this routine, we have a window of 'client' records. For each
'client' record we also have an associated currency table. If the user were to
select a specific 'client' in the window, we could retrieve this 'client' with the
following database calls:

XDbRecordUpdCurrency(hDb, "client", ¤cy, sizeof(struct
currency_index));

XDbRecordGetCurrent(hDb, "client", "lClientNbr", &client, sizeof(CLIENT));

The "currency" structure passed in the XDbRecordUpdCurrency call represents
the currency_index of the selected 'client' record. Because we have a
currency table stored for each 'client' record in the window, we can retrieve
any record in the window using this method.

Deleting a current record

Beware when deleting a current record. If you are storing a series of currency
tables as we have done in the example explained above, deleting a current
record will invalidate currency tables that followed this record. Suppose we
have a window of 'client' records:

Page 26

Record 1: 1010L,"ABC Corp.","Diskette Manufacturer",0.00
Record 2: 1011L,"XYZ Corp.","Hard Drive Manufacturer",0.00
Record 3: 1012L,"BYTE Magazine","Software Publication",0.00
Record 4: 1013L,"Sharp","Electronics",0.00
Record 5: 1014L,"Collins","Radio Electronics",0.00

We have also stored currency tables associated with each 'client' record in the
window.

If for example we delete Record 2, "XYZ Corp.", the currency tables associated
with Records 3, 4, and 5 will now be invalid. Remember that currency tables
contain the page and slot of a data item. If a record is deleted, the key fields
are removed from their associated pages. The data (slots) on a key page are
compressed to be contiguous. Therefore, key fields stored after the deleted
record will be moved up 1 slot. Or possibly, if the slot is the last slot on a
page, the page will be removed entirely.

To avoid retaining invalid currency tables in memory after deleting a record,
currency tables should be re-retrieved after the deletion. To do this, start the
retrieval with the record before the deleted record. In the example above,
Record 2 is being deleted. After the deletion, restore the Record 1 currency
table (using DbRecordUpdCurrency) and re-retrieve next records and
corresponding currency tables (using DbRecordGetCurrency) until the window
is full.

Updating a current record

An update, like the delete described above, can create similar problems. This
is only a problem if the key field that was used for the retrieval of records is
updated. In this case, the slots could be rearranged in an order unknown to
the calling application. The only way to solve this problem, is to re-retrieve
the records and their associated currency tables from the beginning after the
update takes place.

Page 27

Database Internals

Client-Server Implementation
CDB For Windows is implemented using a client-server architecture. The
client is your application. The server is dbserver.exe

dbserver.exe

This executable is the database server program. When a database is opened
using DbOpen, dbserver.exe is spawned. For each DbOpen call, an instance of
dbserver.exe is loaded. Using this method, separate data and stack segments
are loaded for each server required, but the code segments are shared by all
servers. This significantly reduces the memory requirements of the database
server.

The database handle returned from the DbOpen call represents the handle to
the top window of the dbserver.exe instance. All subsequent calls to this
database are identified by the handle.

The dbserver.exe is spawned using a LoadModule call with the SW_HIDE
parameter. The server is hidden for a number of reasons, the most important
being to prevent the termination of a database server by a user.

dbtalk?.lib

The DBTALK library comes in two forms. DBTALKS.LIB, small model library,
and DBTALKM.LIB, medium model library. The library contains the API
functions necessary for database management. The library is currently static.
In a future release, DBTALK will be implemented as a Dynamic Link Library
(DLL).

The DBTALK library communicates with the server by sending a message via
the SendMessage function call. Before a message is sent, a table is built that
describes the client request. The table format is described below:

typedef struct sCDBTALK
{
WORD wCall;
char szName1[67];
char szName2[32];
HANDLE hData1;
HANDLE hData2;
} CDBTALK;

Page 28

Field Description

wCall The type of client request: D_OPEN, D_CLOSE, D_ADD_RECORD,
D_DELETE_RECORD, etc.

szName1 A string location. Could be a record name, field name, database
name, etc.

szName2 A string location. Could be a record name, field name, database
name, etc.

hData1 Could contain a handle to a record to be added, a key value, a
storage area, etc.

hData2 Could contain a handle to a record to be added, a key value, a
storage area, etc.

The table space is allocated from global memory, filled and then sent to the
database server. The database server responds to the request, and frees the
table before returning control back to the client.

A database is closed with the DbClose function call. After the database server
processes this call, the DBTALK library posts a WM_DESTROY to the server,
terminating the instance.

Memory Requirements
CDB For Windows requires a very small amount of memory to operate.
Memory is allocated by the the database server and the dbtalk library.

database server

As described above in the 'client-server implementation' section, after a
DbOpen call, an instance of dbserver.exe is loaded. The database server
memory requirements are as follows:

code segment: 31K
data, local heap, stack: 26K

Total memory: 57K

The code segment is loaded only for the first instance of database server.
Windows manages the sharing of the code segment for multiple instances of
the database server. Therefore, the memory requirements are 57K for the
first database opened, and 26K for databases opened thereafter.

The database server allocates all memory required for data access and
manipulation during the DbOpen call. Memory is NOT allocated by the
database server during the execution of any other database call.

Page 29

A variable amount of memory is allocated beyond what has been described.
Space for the DBD record, owner, member, and field tables. To calculate the
amount of memory that will be required by the DBD, use the following
formula:

DBD memory consumption = (number of records * 46) + (number of
owners * 4) + (number of members * 8) +
(number of fields * 40)

The DBDLIST utility included in this release will display the number of records,
owners, members, and fields in a DBD. Example: the SAMPLEDB.DBD
included in this release will consume 590 bytes when opened.

dbtalk library

The dbtalk library resides as a static library. In a future release, the dbtalk
library will become dynamic. The library consists mostly of code and
consumes approximately 5K of space.

Database Files
Database records are organized in data and key files. Each record type
defined in the DDL will have an associated data file. If any key fields exist in
this record, the record type will also have a key file. Key files have a .key
extension while data files have a .dat extension.

File Naming

Lets take a look at the SAMPLEDB.DDL included with this release:

/* sampledb.ddl */

prefix ABC;

struct client
{
connect address key szStreet;
key long lClientNbr;
key char szName[31];
char szDescription[61];
double dBalance;
};

struct address
{
char szStreet[31];
char szCity[21];
char szState[3];
key char szZip[11];
key char szTelephone[13];
char szFax[13];

Page 30

};

Page 31

struct setup
{
key long lNextClientNbr;
};

Key and data files are not created until the first record of a specific record
type is added. For example, when the first 'client' record is added to the
database, a data and key file will be created. The names used for the .DAT
and .KEY file are derived as follows:

sprintf(szKeyFile, "%s%4.4d", szPrefix, nOrderInDBD);
sprintf(szDatFile, "%s%4.4d", szPrefix, nOrderInDBD);

The szPrefix is the prefix defined in the DDL. In our example, the prefix is
"ABC". The nOrderInDBD is the record number in the database definition
(.DBD) file. When DDLP compiles the DDL into DBD format, record tables are
stored describing each record structure definition. The record tables are
stored in alphabetical order in the DBD file. In our example, the record order
in the DBD is 'address', 'client', then 'setup'. Therefore, when the first 'client'
record is added to the database, ABC0001.DAT and ABC0001.KEY are created.
When the first 'address' record is added, ABC0000.DAT and ABC0000.KEY are
created.

If a record definiton does not contain a key field, a key file is not created for
this record.

Key File Layout

Key files are organized as a series of pages. Pages contain a series of slots.
The slots contain the key data. Slots on a page are in sorted order. A key file
will contain pages of keys for a specific record type. For example, in
SAMPLEDB.DDL, the 'client' key file will contain pages of keys for the 'client'
record. Some pages will contain client numbers and some pages will contain
client names. A page will not contain both client numbers and client names.

The key file structures are listed below:

struct key_file_index
{
CHAR name[12]; /* Key file name */
UINT nextavailpage;

/* Next available page */
UINT firstdelpage; /* First page in the

delete */
/* chain. */

UINT pagenbr[MAXKEY]; /* Key 1st page index
*/

};

This structure is included at the beginning of every key file. It contains
necessary pointers for finding the next available page, first deleted page in

Page 32

the delete chain, and the first page for each key field defined in the record.

Page 33

struct key_page_index
{
UINT prevpage; /* Previous page in

sort tree */
UINT nextpage; /* Next page in sort

tree */
UINT slotsused; /* Number of slots

used on page */
UINT slotsize; /* Size of key slot */
UINT flags; /* Bit 0 - page is full */
};

This structure is included at the beginning of each page in the key file. The
slots in the key file consist of nothing but raw key field data.

Data File Layout

Data files do not contain pages. They are organized as a series of slots in a
file. Pages are not needed here because data files contain only record data.
They are indexed by their respective key files.

The data file structures are listed below:

struct data_file_index
{
CHAR name[12]; /* Data file name */
ULONG nextavailslot; /* Next available slot

*/
ULONG firstdelslot; /* First slot in the

delete */
/* chain. */

UINT slotsize; /* Size of data slot */
CHAR filler[10];
};

This structrure is included at the beginning of every data file. It contains
necessary pointers for finding the next available slot, first deleted slot in the
delete chain, and the data slot size.

struct data_slot_index
{
UINT offsettodata; /* Offset to actual

data */
ULONG nextdel; /* DBA of next

member in the */
/* delete chain. */

};

This structure is included at the beginning of each data slot. A data slot also
contains owner and/or member data if the record type is an owner of or
member of another record. The owner and member pointer tables are not

Page 34

shown here. In summary, a data slot contains a data_slot_index, owner data
tables, member data table, followed by the actual data record.

Page 35

Modifying Internal Definitions
It is relatively easy to change some of the global definitions used by the CDB
For Windows database server. In some extreme cases, modification may be
necessary. This, of course, depends on your database model (data definition
file). Source code is required to make any of the changes to the definitions
listed below.

All definitions described are included in DBMGR.H.

#define NBRHANDLES 8

This value is the number of database files the database server,
DBSERVER.EXE, can have open at one time. A data file exists for every record
defined in the DDL if at least one record of that type has been added. If the
DDL structure definition contains one or more key fields, a key file will also be
created.

struct client
{
key long lClientNbr;
key char szName[31];
char szDescription[61];
double dBalance;
};

In this DDL example, two files will be created when the first record of this type
is added to the database. A data file will be created and because at least 1
key field exists, a key file will also be created.

The database server uses an LRU (least recently used) algorithm to manage
database file handles. If the server needs to open a file and 8 database files
are already open, the server closes the least recently used handle and
proceeds to open the new file. The new file handle is then placed in the LRU
table.

If your database model contains more than 8 database files, database
perfomance may be enhanced by increasing the NBRHANDLES value. Note:
The maximum number of file handles available for a single task under DOS is
20. 5 are reserved for internal use.

#define MAXKEY 8

This value is the maximum number of key fields that a single record definition
can contain. Increase this value only if you have more than 8 key fields
defined in a single record definition.

Page 36

#define KEYPAGESIZE 512

Key fields are stored in sorted order in slots on pages. A key file is made up of
a header and a series of these pages. KEYPAGESIZE is the size of a key page.
If your database key fields are very large, you might increase the performance
of the database by increasing this value. If modified, KEYPAGESIZE should be
a multiple of the average key field length. Note: The larger the key page size,
the longer the access time for reads and writes.

#define NBRPAGES 16

This value is the number of key pages that are buffered in RAM by the
database server. These buffers are managed using an LRU (least recently
used) algorithm for maximum efficiency.

#define DATAPAGESIZE 2048

Data records are stored in slots on pages. The pages are stored in the data
file (.DAT). This value is the size of the data pages. It is recommended that
this value be a power of 2.

#define DATASLOTSIZE 1024

This value is the maximum size of a data slot. A data slot contains a small
header, followed by owner tables (if any), followed by member tables (if any),
followed by the actual data. You will need to increase this value if your record
sizes, when plugged into the formula below, exceed 1024.

Formula:

6 +
(number of members this record owns * 8) +
(number of owners that own this record * 12) +
C structure length (in bytes)

If you have very large C structures you should check them. It is
recommended that DATASLOTSIZE be a power of 2.

Page 37

Utilities

DDLP.EXE
DDLP is the Data Definition Language Parser (compiler). It reads the DDL file
and creates a binary database definition file with a .DBD extenstion. DDLP
also creates a C header file with a .H extension.

The DBD file name is used with the DbOpen function call. The DbOpen
function passes the DBD file name as a parameter. The DBD file is read into
memory by the database server (DBSERVER.EXE) and serves as a roadmap for
the database.

The maximum size of a .DDL file that DDLP can process is 65535 bytes. A
complete list of DDLP error messages are provided in the 'Error Messages'
section in this manual.

Syntax:

DDLP filename(.ddl)

Example:

DDLP sampledb.ddl

In this example, DDLP will create SAMPLEDB.DBD and SAMPLEDB.H if the
compilation is successful.

DBDLIST.EXE
DBDLIST displays the contents of the binary database definition file (.DBD)
created by DDLP. A header, record definitions, owner definitions, member
definitions, and field definitions are displayed.

DBDLIST does not display the contents of any data or key files.

Syntax:

DBDLIST filename.dbd

Example:

DBDLIST sampledb.dbd

Page 38

Using the C-API

Introduction
The CDB For Windows C-API library is callable from both C and C++ modules.
Over 40 functions are available. Function prototypes are defined in DBMGR.H.

Functions that have a prefix of 'X' are extended functions. An extended
function is a superset of an existing function, e.g. XDbRecordAdd(...). The
extended functions were created for programmer convenience.

Functions by Category
Database Management

DbClose Close a database.
DbFlush Flush all data files to disk.
DbOpen Open a database.

Record Management

DbRecordAdd Add a record.
DbRecordDelete Delete a record.
DbRecordUpdate Update a record.
XDbRecordAdd Extended function - Add a

record.
XDbRecordUpdate Extended function - Update a record.

Record Find

DbRecordFindByKey Find a record by key value.
DbRecordFindFirst Find the first record.
DbRecordFindLast Find the last record.
DbRecordFindNext Find the next record.
DbRecordFindPrev Find the previous record.
XDbRecordFindByKey Extended function - Find a record by key value.

Page 39

Record Retrieval

DbRecordGetByKey Get a record by key value.
DbRecordGetCurrent Get the current record.
DbRecordGetFirst Get the first record.
DbRecordGetLast Get the last record.
DbRecordGetNext Get the next record.
DbRecordGetPrev Get the previous record.
XDbRecordGetByKey Extended function - Get a record by key value.
XDbRecordGetCurrent Extended function - Get the current record.
XDbRecordGetFirst Extended function - Get the first record.
XDbRecordGetLast Extended function - Get the last record.
XDbRecordGetNext Extended function - Get the next record.
XDbRecordGetPrev Extended function - Get the previous record.

Record Currency

DbRecordGetCurrency Get the currency table of a record type.
DbRecordUpdCurrency Update the currency table of a record type.
XDbRecordGetCurrency Extended function - Get the currency table of a

record type.
XDbRecordUpdCurrency Extended function - Update the currency table of

a record type.

Set Management

DbSetAdd Make a set connection
between two records.

DbSetDelete Remove a set connection
between two records.

Set Find

DbSetFindFirst Find the first member record
in an owner/member relationship.

DbSetFindLast Find the last member record
in an owner/member relationship.

DbSetFindNext Find the next member
record in an owner/member relationship.

DbSetFindPrev Find the previous member
record in an owner/member relationship.

Page 40

Set Retrieval

DbSetGetFirst Get the first member record
in an owner/member relationship.

DbSetGetLast Get the last member record
in an owner/member relationship.

DbSetGetNext Get the next member record
in an owner/member relationship.

DbSetGetOwner Get the owner record of a
member in an owner/member relationship.

DbSetGetPrev Get the previous member
record in an owner/member relationship.

XDbSetGetFirst Extended function - Get the
first member record in an owner/member
relationship.

XDbSetGetLast Extended function - Get the
last member record in an owner/member
relationship.

XDbSetGetNext Extended function - Get the
next member record in an owner/member
relationship.

XDbSetGetOwner Extended function - Get the owner record of a
member in an owner/member relationship.

XDbSetGetPrev Extended function - Get the
previous member record in an owner/member
relationship.

Page 41

DbClose

Summary

DWORD FAR PASCAL DbClose(HANDLE hDb);

Parameters

hDb HANDLE Identifies the database to be closed.

Description

The DbClose function closes an open database. All database files are closed,
memory deallocated, and the associated server instance, DBSERVER.EXE, is
terminated.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC
or E_DOS. See the 'Error Messages' section for more detail on these values.

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HWND hWnd)
{
HANDLE hDb;
DWORD dwStatus;

if(dwStatus = DbOpen(hWnd, ".\\", "test.dbd", &hDb))
{
/* Database not opened */
}

/* Other CDB calls... */

if(dwStatus = DbClose(hDb))
{
/* Database not closed */
}

}

Page 42

DbFlush
Summary

DWORD FAR PASCAL DbFlush(HANDLE hDb);

Parameters

hDb HANDLE Identifies the database to be flushed.

Description

The DbFlush function forces all data written to the database to disk. If DOS 3.30 or
higher is being used, DbFlush uses the DOS Commit function call. Otherwise, the
open files are closed and then reopened.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC
or E_DOS. See the 'Error Messages' section for more detail on these values.

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb, struct client far *lpClient)
{
DWORD dwStatus;

if(dwStatus = XDbRecordUpdate(hDb, "client", lpClient, sizeof(struct client)))
{
/* Record not updated */
}

if(dwStatus = DbFlush(hDb))
{
/* Database not flushed */
}

}

Page 43

DbOpen
Summary

DWORD FAR PASCAL DbOpen(HWND hParentWnd, LPSTR szDbDir, LPSTR szDbName,
HANDLE *hDb)

Parameters

hParentWnd HWND Identifies the parent window of the database.

szDbDir LPSTR Identifies the directory where CDB will attempt to open
the .DBD (Database Definition) file. CDB will also attempt to
open and/or create all associated database files in this directory.
If NULL, CDB will use the current directory. Note: If a directory
name is present, it must end with a backslash. e.g. "C:\\
PRODUCTA\\".

szDbName LPSTR Identifies the .DBD (Database Definition) file.

hDb HANDLE * Pointer to the storage location of the database
handle. If DbOpen is successful, this location will contain the
handle for the opened database.

Description

The DbOpen function opens a CDB database. The database definition file
(szDbName) is created by DDLP.EXE. Multiple databases can be opened concurrently
by a single MS-Windows application. The handle returned, hDb, is to be used in
subsequent calls to the database.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_ALREADYOPEN, E_LOADMODULE, or E_DOS. See the 'Error Messages' section for
more detail on these values.

Page 44

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HWND hWnd)
{
HANDLE hDb;
DWORD dwStatus;

if(dwStatus = DbOpen(hWnd, "C:\\PRODUCTA\\", "test.dbd", &hDb))
{
/* Error opening database */
}

/* Other CDB calls... */
}

Page 45

DbRecordAdd
Summary

DWORD FAR PASCAL DbRecordAdd(HANDLE hDb, LPSTR szRecName, HANDLE hData)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

hData HANDLE Identifies the record data to be added. This handle
must be allocated using the GMEM_DDESHARE flag.

Description

The DbRecordAdd function adds a record to the database.

See Also

XDbRecordAdd

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, or E_NORECNAME. See the 'Error Messages' section for more detail on these
values.

Example

#include <windows.h>
#include "dbmgr.h"

DWORD Function(HANDLE hDb, HANDLE hClientData)
{
DWORD dwStatus;

if(dwStatus = DbRecordAdd(hDb, "client", hClientData))
{
/* Error adding record */
}

return dwStatus;
}

Page 46

DbRecordDelete
Summary

DWORD FAR PASCAL DbRecordDelete(HANDLE hDb, LPSTR szRecName)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

Description

The DbRecordDelete function deletes a record from the database. The record deleted
is the current record of the szRecName type.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, or E_NOCURRENT. See the 'Error Messages' section for more
detail on these values.

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;

if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,
sizeof(LONG)))
{
/* Record not found */
}

if(dwStatus = DbRecordDelete(hDb, "client"))
{
/* Error deleting record */
}

}

Page 47

DbRecordFindByKey
Summary

DWORD FAR PASCAL DbRecordFindByKey(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, HANDLE hKey)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

hKey HANDLE Identifies the key data to be used for the record
search. This handle must be allocated using the
GMEM_DDESHARE flag.

Description

The DbRecordFindByKey function searches for a specific record using a key field and
key value.

See Also

XDbRecordFindByKey

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, or E_NEXTGUESS.
See the 'Error Messages' section for more detail on these values.

Page 48

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hKey;
LONG FAR *lpKey;
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Store the key data */
hKey = GlobalAlloc(GMEM_MOVEABLE | GMEM_ZEROINIT, (DWORD)sizeof(LONG));
lpKey = (LONG FAR *)GlobalLock(hKey));
*lpKey = lClientNbr;
GlobalUnlock(hKey);

if(dwStatus = DbRecordFindByKey(hDb, "client", "lClientNbr", hKey))
{
/* Record not found */
}

GlobalFree(hKey);
}

Page 49

DbRecordFindFirst
Summary

DWORD FAR PASCAL DbRecordFindFirst(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

Description

The DbRecordFindFirst function sets the database currency to the first logical record
sorted by szFldName. For more on currency, see the Database Currency section in
this manual.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, or E_NOTFOUND. See the 'Error
Messages' section for more detail on these values.

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;

/* Delete all client records in database */
while(! DbRecordFindFirst(hDb, "client", "lClientNbr"))

{
if(dwStatus = DbRecordDelete(hDb, "client"))

{
/* Error deleting record */
}

}
}

Page 50

DbRecordFindLast
Summary

DWORD FAR PASCAL DbRecordFindLast(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

Description

The DbRecordFindLast function sets the database currency to the last logical record
sorted by szFldName. For more on currency, see the Database Currency section in
this manual.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, or E_NOTFOUND. See the 'Error
Messages' section for more detail on these values.

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;

/* Delete all client records in database */
while(! DbRecordFindLast(hDb, "client", "lClientNbr"))

{
if(dwStatus = DbRecordDelete(hDb, "client"))

{
/* Error deleting record */
}

}
}

Page 51

DbRecordFindNext
Summary

DWORD FAR PASCAL DbRecordFindNext(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

Description

The DbRecordFindNext function sets the database currency to the next logical record
sorted by szFldName. The record must have currency before this call is executed.
For more on currency, see the Database Currency section in this manual.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, E_NOCURRENT,
or E_NONEXT. See the 'Error Messages' section for more detail on these values.

Example

#include <windows.h>
#include "dbmgr.h"

DWORD Function(HANDLE hDb)
{
/* Down arrow key pressed, check for next */
/* record in database. */
return(DbRecordFindNext(hDb, "client", "lClientNbr"));
}

Page 52

DbRecordFindPrev
Summary

DWORD FAR PASCAL DbRecordFindPrev(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

Description

The DbRecordFindPrev function sets the database currency to the previous logical
record sorted by szFldName. The record must have currency before this call is
executed. For more on currency, see the Database Currency section in this manual.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, E_NOCURRENT,
or E_NOPREV. See the 'Error Messages' section for more detail on these values.

Example

#include <windows.h>
#include "dbmgr.h"

DWORD Function(HANDLE hDb)
{
/* Up arrow key pressed, check for previous */
/* record in database. */
return(DbRecordFindPrev(hDb, "client", "lClientNbr"));
}

Page 53

DbRecordGetByKey
Summary

DWORD FAR PASCAL DbRecordGetByKey(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, HANDLE hTarget, HANDLE hKey)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

hKey HANDLE Identifies the key data. Must be allocated using
GMEM_DDESHARE flag.

Description

The DbRecordGetByKey function retrieves a record using a key value. If the exact
match cannot be found the function will return E_NEXTGUESS specifying that the data
returned is the next best guess.

See Also

XDbRecordGetByKey

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, or E_NEXTGUESS.
See the 'Error Messages' section for more detail on these values.

Page 54

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hKey, hTarget;
LONG FAR *lpKey;
DWORD dwStatus;

/* Store the key data (1000L) */
hKey = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(LONG));
lpKey = (LONG FAR *)GlobalLock(hKey);
*lpKey = 1000L;
GlobalUnlock(hKey);

/* Allocate the target area */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct client));

/* Find client record with client number equal 1000L */
if(dwStatus = DbRecordGetByKey(hDb, "client", "lClientNbr", hTarget, hKey))

{
/* Client not retrieved */
}

/* If successful, record returned in 'hTarget' */
}

Page 55

DbRecordGetCurrency
Summary

DWORD FAR PASCAL DbRecordGetCurrency(HANDLE hDb, LPSTR szRecName,
HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

hTarget HANDLE Identifies the storage area for the currency
information. Must be allocated using GMEM_DDESHARE flag.

Description

The DbRecordGetCurrency function retrieves the current currency table for a specific
record. For more on currency, see the Database Currency section in this manual.

See Also

XDbRecordGetCurrency

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, or E_NORECNAME. See the 'Error Messages' section for more detail on these
values.

Page 56

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hCurrency;
DWORD dwStatus;

/* Allocate the target area for currency table. */
/* Note: 'currency_index is defined in DBMGR.H */
hCurrency = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct currency_index));

/* Get the currency for the client record */
if(dwStatus = DbRecordGetCurrency(hDb, "client", hCurrency))

{
/* Currency not retrieved */
}

/* Other processing goes here... */

/* Restore the currency for the client record */
if(dwStatus = DbRecordUpdCurrency(hDb, "client", hCurrency))

{
/* Currency not updated */
}

}

Page 57

DbRecordGetCurrent
Summary

DWORD FAR PASCAL DbRecordGetCurrent(HANDLE hDb, LPSTR szRecName, HANDLE
hTarget)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbRecordGetCurrent function retrieves the record that has currency (or 'is
current') for that record type (record name). Each record type has its own currency
table. For more on currency, see the Database Currency section in this manual.

See Also

XDbRecordGetCurrent

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, or E_NOCURRENT. See the 'Error Messages' section for more
detail on these values.

Page 58

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Check for client #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Allocate storage for the record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct client));

/* Retrieve it */
if(dwStatus = DbRecordGetCurrent(hDb, "client", hTarget))

{
/* Record not retrieved */
}

/* If successful, record returned in 'hTarget' */
}

Page 59

DbRecordGetFirst
Summary

DWORD FAR PASCAL DbRecordGetFirst(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbRecordGetFirst function retrieves the first record by the key field passed. After
this call, the currency for this record type is set to the first record.

See Also

XDbRecordGetFirst

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, or E_NOTFOUND. See the 'Error
Messages' section for more detail on these values.

Page 60

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;

/* Allocate space for the client record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct client));

/* Get the first record sorted by client number*/
if(dwStatus = DbRecordGetFirst(hDb, "client", "lClientNbr", hTarget))

{
/* Record not retrieved */
}

/* If successful, record returned in 'hTarget' */
}

Page 61

DbRecordGetLast
Summary

DWORD FAR PASCAL DbRecordGetLast(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbRecordGetLast function retrieves the last record by the key field passed. After
this call, the currency for this record type is set to the last record.

See Also

XDbRecordGetLast

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, or E_NOTFOUND. See the 'Error
Messages' section for more detail on these values.

Page 62

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;

/* Allocate space for the client record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct client));

/* Get the last record sorted by client number*/
if(dwStatus = DbRecordGetLast(hDb, "client", "lClientNbr", hTarget))

{
/* Record not retrieved */
}

/* If successful, record returned in 'hTarget' */
}

Page 63

DbRecordGetNext
Summary

DWORD FAR PASCAL DbRecordGetNext(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbRecordGetNext function retrieves the next record by the key field passed.
After this call, the currency for this record type is set to the record retrieved.

See Also

XDbRecordGetNext

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, E_NOCURRENT,
or E_NONEXT. See the 'Error Messages' section for more detail on these values.

Page 64

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;

/* Allocate space for the client record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct client));

/* Get the next record sorted by client number*/
if(dwStatus = DbRecordGetNext(hDb, "client", "lClientNbr", hTarget))

{
/* Record not retrieved */
}

/* If successful, record returned in 'hTarget' */
}

Page 65

DbRecordGetPrev
Summary

DWORD FAR PASCAL DbRecordGetPrev(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbRecordGetPrev function retrieves the previous record by the key field passed.
After this call, the currency for this record type is set to the record retrieved.

See Also

XDbRecordGetPrev

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, E_NOCURRENT,
or E_NOPREV. See the 'Error Messages' section for more detail on these values.

Page 66

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;

/* Allocate space for the client record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct client));

/* Get the previous record sorted by client number*/
if(dwStatus = DbRecordGetPrev(hDb, "client", "lClientNbr", hTarget))

{
/* Record not retrieved */
}

/* If successful, record returned in 'hTarget' */
}

Page 67

DbRecordUpdate
Summary

DWORD FAR PASCAL DbRecordUpdate(HANDLE hDb, LPSTR szRecName, HANDLE
hData)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

hData HANDLE Identifies the updated record data. This handle must
be allocated using the GMEM_DDESHARE flag.

Description

The DbRecordUpdate function updates a database record. The record to be updated
must be current. For more on currency, see the Database Currency section in this
manual.

See Also

XDbRecordUpdate

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, or E_NOCURRENT. See the 'Error Messages' section for more
detail on these values.

Page 68

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hData;
DWORD dwStatus;

/* Allocate space for the client record */
hData = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct client));

/* Get the first record */
if(dwStatus = DbRecordGetFirst(hDb, "client", "lClientNbr", hData))

{
/* Record not retrieved */
}

/* Modify input logic goes here... */

/* Update the record */
if(dwStatus = DbRecordUpdate(hDb, "client", "lClientNbr", hData))

{
/* Error updating record */
}

}

Page 69

DbRecordUpdCurrency
Summary

DWORD FAR PASCAL DbRecordUpdCurrency(HANDLE hDb, LPSTR szRecName,
HANDLE hData)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

hData HANDLE Identifies the storage area for the currency
information. Must be allocated using GMEM_DDESHARE flag.

Description

The DbRecordUpdCurrency function updates the currency for a specific record type.
For more on currency, see the Database Currency section in this manual.

See Also

XDbRecordUpdCurrency

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, or E_NORECNAME. See the 'Error Messages' section for more detail on these
values.

Page 70

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hCurrency;
DWORD dwStatus;

/* Allocate the target area for currency table. */
/* Note: 'currency_index is defined in DBMGR.H */
hCurrency = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct currency_index));

/* Get the currency for the client record */
if(dwStatus = DbRecordGetCurrency(hDb, "client", hCurrency))

{
/* Error retrieving currency */
}

/* Other processing goes here... */

/* Restore the currency for the client record */
if(dwStatus = DbRecordUpdCurrency(hDb, "client", hCurrency))

{
/* Error updating currency */
}

}

Page 71

DbSetAdd
Summary

DWORD FAR PASCAL DbSetAdd(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

Description

The DbSetAdd function makes a set connection between two records. Both records
must have currency before making the call.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, or E_NOCURRENT. See the 'Error Messages'
section for more detail on these values.

Page 72

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;

/* Add an client record */
/* Assuming 'sclient' is global and structure prefilled */
if(dwStatus = XDbRecordAdd(hDb, "client", &sclient, sizeof(struct client)))

{
/* Error adding record */
}

/* Add an address record */
/* Assuming 'saddress' is global and structure prefilled */
if(dwStatus = XDbRecordAdd(hDb, "address", &saddres, sizeof(struct address)))

{
/* Error adding record */
}

/* Make a set connection between records */
/* After this call, the 'client' record is the owner of the 'address' record */
/* The 'address' record is a member of the 'client' record */
if(dwStatus = DbSetAdd(hDb, "client", "address"))

{
/* Error making set connection */
}

}

Page 73

DbSetDelete
Summary

DWORD FAR PASCAL DbSetDelete(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

Description

The DbSetDelete function removes a set connection between two records. Both
records must have currency before making the call. This function does not delete
either record, it only removes the connection between the two.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, or E_NOCURRENT. See the 'Error Messages'
section for more detail on these values.

Page 74

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Set the currency for the address record to the first member of the client record
*/

if(dwStatus = DbSetFindFirst(hDb, "client", "address"))
{
/* First member not found */
}

/* Delete the owner/member set connection */
if(dwStatus = DbSetDelete(hDb, "client", "address"))

{
/* Error deleting record */
}

}

Page 75

DbSetFindFirst
Summary

DWORD FAR PASCAL DbSetFindFirst(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

Description

The DbSetFindFirst function sets the database currency for the member record to the
first member in the owner/member set relation. The owner record must have
currency before this call. For more on currency, see the Database Currency section in
this manual.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOTFOUND. See the
'Error Messages' section for more detail on these values.

Page 76

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Set the currency for the address record to the first member of the client record
*/

if(dwStatus = DbSetFindFirst(hDb, "client", "address"))
{
/* First member not found */
}

}

Page 77

DbSetFindLast
Summary

DWORD FAR PASCAL DbSetFindLast(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

Description

The DbSetFindLast function sets the database currency for the member record to the
last member in the owner/member set relation. The owner record must have
currency before this call. For more on currency, see the Database Currency section in
this manual.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOTFOUND. See the
'Error Messages' section for more detail on these values.

Page 78

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Set the currency for the address record to the last member of the client record
*/

if(dwStatus = DbSetFindLast(hDb, "client", "address"))
{
/* Last member not found */
}

}

Page 79

DbSetFindNext
Summary

DWORD FAR PASCAL DbSetFindNext(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

Description

The DbSetFindNext function sets the database currency for the member record to the
next member in the owner/member set relation. Both owner and member records
must have currency before this call. For more on currency, see the Database
Currency section in this manual.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NONEXT. See the 'Error
Messages' section for more detail on these values.

Page 80

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Set the currency for the address record to the first member of the client record
*/

if(dwStatus = DbSetFindFirst(hDb, "client", "address"))
{
/* First member not found */
}

/* Set the currency for the address record to the next member of the client record
*/

if(dwStatus = DbSetFindNext(hDb, "client", "address"))
{
/* Next member not found */
}

}

Page 81

DbSetFindPrev
Summary

DWORD FAR PASCAL DbSetFindPrev(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

Description

The DbSetFindPrev function sets the database currency for the member record to the
previous member in the owner/member set relation. Both owner and member
records must have currency before this call. For more on currency, see the Database
Currency section in this manual.

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOPREV. See the 'Error
Messages' section for more detail on these values.

Page 82

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Set the currency for the address record to the last member of the client record
*/

if(dwStatus = DbSetFindLast(hDb, "client", "address"))
{
/* Last member not found */
}

/* Set the currency for the address record to the previous member of the client
record */

if(dwStatus = DbSetFindPrev(hDb, "client", "address"))
{
/* Previous member not found */
}

}

Page 83

DbSetGetFirst
Summary

DWORD FAR PASCAL DbSetGetFirst(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbSetGetFirst function retrieves the first member of an owner/member set
relation. The owner record must have currency before this call. For more on
currency, see the Database Currency section in this manual.

See Also

XDbSetGetFirst

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOTFOUND. See the
'Error Messages' section for more detail on these values.

Page 84

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Allocate storage for the addres record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct address));

/* Get the first address record */
if(dwStatus = DbSetGetFirst(hDb, "client", "address", hTarget))

{
/* First member not found */
}

}

Page 85

DbSetGetLast
Summary

DWORD FAR PASCAL DbSetGetLast(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbSetGetLast function retrieves the last member of an owner/member set
relation. The owner record must have currency before this call. For more on
currency, see the Database Currency section in this manual.

See Also

XDbSetGetLast

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOTFOUND. See the
'Error Messages' section for more detail on these values.

Page 86

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Allocate storage for the addres record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct address));

/* Get the last address record */
if(dwStatus = DbSetGetLast(hDb, "client", "address", hTarget))

{
/* Last member not found */
}

}

Page 87

DbSetGetNext
Summary

DWORD FAR PASCAL DbSetGetNext(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbSetGetNext function retrieves the next member of an owner/member set
relation. Both owner and member records must have currency before this call. For
more on currency, see the Database Currency section in this manual.

See Also

XDbSetGetNext

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NONEXT. See the 'Error
Messages' section for more detail on these values.

Page 88

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Allocate storage for the addres record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct address));

/* Get the first address record */
if(dwStatus = DbSetGetFirst(hDb, "client", "address", hTarget))

{
/* First member not found */
}

/* Get the next address record */
if(dwStatus = DbSetGetNext(hDb, "client", "address", hTarget))

{
/* Next member not found */
}

}

Page 89

DbSetGetOwner
Summary

DWORD FAR PASCAL DbSetGetOwner(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbSetGetOwner function retrieves the owner record of a member record set
relation. The member record must have currency before this call. For more on
currency, see the Database Currency section in this manual.

See Also

XDbSetGetOwner

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOOWNER. See the
'Error Messages' section for more detail on these values.

Page 90

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;
DWORD dwStatus;

/* Set the currency to the first invoice record */
if(dwStatus = DbRecordFindFirst(hDb, "invoice", "lInvoiceNbr"))

{
/* Invoice not found */
}

/* Allocate storage for the client record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct client));

/* Get the client record for this invoice */
if(dwStatus = DbSetGetOwner(hDb, "client", "invoice", hTarget))

{
/* Client record not found */
}

}

Page 91

DbSetGetPrev
Summary

DWORD FAR PASCAL DbSetGetPrev(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, HANDLE hTarget)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

hTarget HANDLE Identifies the storage area for the record data. Must
be allocated using GMEM_DDESHARE flag.

Description

The DbSetGetPrev function retrieves the previous member of an owner/member set
relation. Both owner and member records must have currency before this call. For
more on currency, see the Database Currency section in this manual.

See Also

XDbSetGetPrev

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOPREV. See the 'Error
Messages' section for more detail on these values.

Page 92

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
HANDLE hTarget;
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Allocate storage for the addres record */
hTarget = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(DWORD)sizeof(struct address));

/* Get the last address record */
if(dwStatus = DbSetGetLast(hDb, "client", "address", hTarget))

{
/* Last member not found */
}

/* Get the previous address record */
if(dwStatus = DbSetGetPrev(hDb, "client", "address", hTarget))

{
/* Previous member not found */
}

}

Page 93

XDbRecordAdd
Summary

DWORD FAR PASCAL XDbRecordAdd(HANDLE hDb, LPSTR szRecName, LPVOID
lpData, short nDataLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

lpData LPVOID Pointer to the data to be added.

nDataLen short Length of the data in lpData.

Description

The XDbRecordAdd function adds a record to the database.

See Also

DbRecordAdd

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, or E_NORECNAME. See the 'Error Messages' section for more detail on these
values.

Page 94

Example

#include <windows.h>
#include "dbmgr.h"

DWORD Function(HANDLE hDb, struct client far *lpClient)
{
DWORD dwStatus;

if(dwStatus = XDbRecordAdd(hDb, "client", lpClient, sizeof(struct client)))
{
/* Record not added */
}

return dwStatus;
}

Page 95

XDbRecordFindByKey
Summary

DWORD FAR PASCAL XDbRecordFindByKey(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, LPVOID lpKey, short nKeyLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

lpKey LPVOID Pointer to key data to be used for find.

nKeyLen short Length of the key data in lpKey.

Description

The XDbRecordFindByKey function searches for a specific record using a key field and
key value.

See Also

DbRecordFindByKey

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, or E_NEXTGUESS.
See the 'Error Messages' section for more detail on these values.

Page 96

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;

/* Set the currency for the client record type to client #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Client #1000 not found*/
}

}

Page 97

XDbRecordGetByKey
Summary

DWORD FAR PASCAL XDbRecordGetByKey(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, LPVOID lpTarget, short nTargetLen, LPVOID lpKey, short nKeyLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

lpTarget LPVOID Pointer to the storage location for the retrieved data.

nTargetLen short Length of storage location lpTarget.

lpKey LPVOID Pointer to key data to be used for search.

nKeyLen short Length of the key data in lpKey.

Description

The XDbRecordGetByKey function retrieves a record using a key value. If the exact
match cannot be found the function will return E_NEXTGUESS specifying that the data
returned is the next best guess.

See Also

DbRecordGetByKey

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, or E_NEXTGUESS.
See the 'Error Messages' section for more detail on these values.

Page 98

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;
struct client sclient;

/* Get client record #1000 */
if(dwStatus = XDbRecordGetByKey(hDb, "client", "lClientNbr", &sclient,

sizeof(struct client), &lClientNbr, sizeof(LONG)))
{
/* Record not found, if dwStatus == E_NEXTGUESS, 'sclient' contains the next

best guess */
}

}

Page 99

XDbRecordGetCurrency
Summary

DWORD FAR PASCAL XDbRecordGetCurrency(HANDLE hDb, LPSTR szRecName,
LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

lpTarget LPVOID Pointer to the storage location for the retrieved
currency data.

nTargetLen short Length of storage location lpTarget.

Description

The XDbRecordGetCurrency function retrieves the current currency table for a
specific record. For more on currency, see the Database Currency section in this
manual.

See Also

DbRecordGetCurrency

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, or E_NORECNAME. See the 'Error Messages' section for more detail on these
values.

Page 100

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;
/* Note: 'currency_index' is defined in DBMGR.H */
struct currency_index scurrency;

/* Get the currency for the client record */
if(dwStatus = XDbRecordGetCurrency(hDb, "client", &scurrency, sizeof(struct

currency_index)))
{
/* Currency not retrieved */
}

/* Other processing goes here... */

/* Restore the currency for the client record */
if(dwStatus = XDbRecordUpdCurrency(hDb, "client", &scurrency, sizeof(struct

currency_index)))
{
/* Currency not updated */
}

}

Page 101

XDbRecordGetCurrent
Summary

DWORD FAR PASCAL XDbRecordGetCurrent(HANDLE hDb, LPSTR szRecName, LPVOID
lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

lpTarget LPVOID Pointer to the storage location for the retrieved record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbRecordGetCurrent function retrieves the record that has currency (or 'is
current') for that record type (record name). Each record type has its own currency
table. For more on currency, see the Database Currency section in this manual.

See Also

DbRecordGetCurrent

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, or E_NOCURRENT. See the 'Error Messages' section for more
detail on these values.

Page 102

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;
struct client sclient;

/* Check for client #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Client not found */
}

/* Retrieve it */
if(dwStatus = XDbRecordGetCurrent(hDb, "client", &sclient, sizeof(struct

client)))
{
/* Error retrieving record */
}

}

Page 103

XDbRecordGetFirst
Summary

DWORD FAR PASCAL XDbRecordGetFirst(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

lpTarget LPVOID Pointer to the storage location for the retrieved record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbRecordGetFirst function retrieves the first record by the key field passed.
After this call, the currency for this record type is set to the first record.

See Also

DbRecordGetFirst

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, or E_NOTFOUND. See the 'Error
Messages' section for more detail on these values.

Page 104

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;
struct client sclient;

/* Get the first record sorted by client number*/
if(dwStatus = XDbRecordGetFirst(hDb, "client", "lClientNbr", &sclient,

sizeof(struct client)))
{
/* Record not found */
}

}

Page 105

XDbRecordGetLast
Summary

DWORD FAR PASCAL XDbRecordGetLast(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

lpTarget LPVOID Pointer to the storage location for the retrieved record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbRecordGetLast function retrieves the last record by the key field passed.
After this call, the currency for this record type is set to the last record.

See Also

DbRecordGetLast

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, or E_NOTFOUND. See the 'Error
Messages' section for more detail on these values.

Page 106

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;
struct client sclient;

/* Get the last record sorted by client number*/
if(dwStatus = XDbRecordGetLast(hDb, "client", "lClientNbr", &sclient,

sizeof(struct client)))
{
/* Record not found */
}

}

Page 107

XDbRecordGetNext
Summary

DWORD FAR PASCAL XDbRecordGetNext(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

lpTarget LPVOID Pointer to the storage location for the retrieved record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbRecordGetNext function retrieves the next record by the key field passed.
After this call, the currency for this record type is set to the record retrieved.

See Also

DbRecordGetNext

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, E_NOCURRENT,
or E_NONEXT. See the 'Error Messages' section for more detail on these values.

Page 108

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;
struct client sclient;

/* Get the next record sorted by client number*/
if(dwStatus = XDbRecordGetNext(hDb, "client", "lClientNbr", &sclient,

sizeof(struct client)))
{
/* Record not found */
}

}

Page 109

XDbRecordGetPrev
Summary

DWORD FAR PASCAL XDbRecordGetPrev(HANDLE hDb, LPSTR szRecName, LPSTR
szFldName, LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

szFldName LPSTR Pointer to the field name. Must be a key field.

lpTarget LPVOID Pointer to the storage location for the retrieved record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbRecordGetPrev function retrieves the previous record by the key field passed.
After this call, the currency for this record type is set to the record retrieved.

See Also

DbRecordGetPrev

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_NOFLDNAME, E_NOTAKEY, E_NOTFOUND, E_NOCURRENT,
or E_NOPREV. See the 'Error Messages' section for more detail on these values.

Page 110

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;
struct client sclient;

/* Get the previous record sorted by client number*/
if(dwStatus = XDbRecordGetPrev(hDb, "client", "lClientNbr", &sclient,

sizeof(struct client)))
{
/* Record not found */
}

}

Page 111

XDbRecordUpdate
Summary

DWORD FAR PASCAL XDbRecordUpdate(HANDLE hDb, LPSTR szRecName, LPVOID
lpData, short nDataLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

lpData LPVOID Pointer to the storage location of the updated record.

nDataLen short Length of storage location lpData.

Description

The XDbRecordUpdate function updates a database record. The record to be updated
must be current. For more on currency, see the Database Currency section in this
manual.

See Also

DbRecordUpdate

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, or E_NOCURRENT. See the 'Error Messages' section for more
detail on these values.

Page 112

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;
struct client sclient;

/* Get the first record */
if(dwStatus = XDbRecordGetFirst(hDb, "client", "lClientNbr", &sclient,

sizeof(struct client)))
{
/* Record not found */
}

/* Modify input logic goes here... */

/* Update the record */
if(dwStatus = XDbRecordUpdate(hDb, "client", "lClientNbr", &sclient,

sizeof(struct client)))
{
/* Record not updated */
}

}

Page 113

XDbRecordUpdCurrency
Summary

DWORD FAR PASCAL XDbRecordUpdCurrency(HANDLE hDb, LPSTR szRecName,
LPVOID lpData, short nDataLen)

Parameters

hDb HANDLE Identifies the database.

szRecName LPSTR Pointer to the record name.

lpData LPVOID Pointer to the storage location for the currency
information.

nDataLen short Length of storage location lpData.

Description

The XDbRecordUpdCurrency function updates the currency for a specific record type.
For more on currency, see the Database Currency section in this manual.

See Also

DbRecordUpdCurrency

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, or E_NORECNAME. See the 'Error Messages' section for more detail on these
values.

Page 114

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;
/* Note: 'currency_index is defined in DBMGR.H */
struct currency_index currency;

/* Get the currency for the client record */
if(dwStatus = XDbRecordGetCurrency(hDb, "client", ¤cy, sizeof(struct

currency_index)))
{
/* Currency not retrieved */
}

/* Other processing goes here... */

/* Restore the currency for the client record */
if(dwStatus = XDbRecordUpdCurrency(hDb, "client", ¤cy, sizeof(struct

currency_index)))
{
/* Currency not updated */
}

}

Page 115

XDbSetGetFirst
Summary

DWORD FAR PASCAL XDbSetGetFirst(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

lpTarget LPVOID Pointer to the storage location for the retrieved
member record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbSetGetFirst function retrieves the first member of an owner/member set
relation. The owner record must have currency before this call. For more on
currency, see the Database Currency section in this manual.

See Also

DbSetGetFirst

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOTFOUND. See the
'Error Messages' section for more detail on these values.

Page 116

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;
struct address saddress;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Get the first address record */
if(dwStatus = XDbSetGetFirst(hDb, "client", "address", &saddress, sizeof(struct

address)))
{
/* First member not found */
}

}

Page 117

XDbSetGetLast
Summary

DWORD FAR PASCAL XDbSetGetLast(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

lpTarget LPVOID Pointer to the storage location for the retrieved
member record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbSetGetLast function retrieves the last member of an owner/member set
relation. The owner record must have currency before this call. For more on
currency, see the Database Currency section in this manual.

See Also

DbSetGetLast

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOTFOUND. See the
'Error Messages' section for more detail on these values.

Page 118

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;
struct address saddress;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Get the last address record */
if(dwStatus = XDbSetGetLast(hDb, "client", "address", &saddress, sizeof(struct

address)))
{
/* Last member not found */
}

}

Page 119

XDbSetGetNext
Summary

DWORD FAR PASCAL XDbSetGetNext(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

lpTarget LPVOID Pointer to the storage location for the retrieved
member record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbSetGetNext function retrieves the next member of an owner/member set
relation. Both owner and member records must have currency before this call. For
more on currency, see the Database Currency section in this manual.

See Also

DbSetGetNext

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NONEXT. See the 'Error
Messages' section for more detail on these values.

Page 120

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;
struct address saddress;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Get the first address record */
if(dwStatus = XDbSetGetFirst(hDb, "client", "address", &saddress, sizeof(struct

address)))
{
/* First member not found */
}

/* Get the next address record */
if(dwStatus = XDbSetGetNext(hDb, "client", "address", &saddress, sizeof(struct

address)))
{
/* Next member not found */
}

}

Page 121

XDbSetGetOwner
Summary

DWORD FAR PASCAL XDbSetGetOwner(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

lpTarget LPVOID Pointer to the storage location for the retrieved owner
record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbSetGetOwner function retrieves the owner record of a member record set
relation. The member record must have currency before this call. For more on
currency, see the Database Currency section in this manual.

See Also

DbSetGetOwner

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOOWNER. See the
'Error Messages' section for more detail on these values.

Page 122

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
DWORD dwStatus;
struct client sclient;

/* Set the currency to the first invoice record */
if(dwStatus = DbRecordFindFirst(hDb, "invoice", "lInvoiceNbr"))

{
/* Invoice not found */
}

/* Get the client record for this invoice */
if(dwStatus = XDbSetGetOwner(hDb, "client", "invoice", &sclient, sizeof(struct

client)))
{
/* Client record not found */
}

}

Page 123

XDbSetGetPrev
Summary

DWORD FAR PASCAL XDbSetGetPrev(HANDLE hDb, LPSTR szOwnerName, LPSTR
szMemberName, LPVOID lpTarget, short nTargetLen)

Parameters

hDb HANDLE Identifies the database.

szOwnerName LPSTR Pointer to the owner record name.

szMemberName LPSTR Pointer to the member record name.

lpTarget LPVOID Pointer to the storage location for the retrieved
member record.

nTargetLen short Length of storage location lpTarget.

Description

The XDbSetGetPrev function retrieves the previous member of an owner/member set
relation. Both owner and member records must have currency before this call. For
more on currency, see the Database Currency section in this manual.

See Also

DbSetGetPrev

Return Value

A 0L is returned if no error occurred. Otherwise the return code can be E_WINALLOC,
E_DOS, E_NORECNAME, E_INVALIDSET, E_NOCURRENT, or E_NOPREV. See the 'Error
Messages' section for more detail on these values.

Page 124

Example

#include <windows.h>
#include "dbmgr.h"

void Function(HANDLE hDb)
{
LONG lClientNbr = 1000L;
DWORD dwStatus;
struct address saddress;

/* Set the currency to client record #1000 */
if(dwStatus = XDbRecordFindByKey(hDb, "client", "lClientNbr", &lClientNbr,

sizeof(LONG)))
{
/* Record not found */
}

/* Get the last address record */
if(dwStatus = XDbSetGetLast(hDb, "client", "address", &saddress, sizeof(struct

address)))
{
/* Last member not found */
}

/* Get the previous address record */
if(dwStatus = XDbSetGetPrev(hDb, "client", "address", &saddress, sizeof(struct

address)))
{
/* Previous member not found */
}

}

Page 125

Error Messages
This section describes error messages that you may encounter when
developing a program using CDB For Windows.

CDB Run-Time Error Messages
The CDB For Windows C-API function calls return a DWORD value indicating
the success or failure of a particular database call. A 0L is returned if the
function was a success. A non-zero value is returned if an error occured.

If the return value is non-zero, the LOWORD contains the error code and the
HIWORD contains the extended error code if one exists. Use the LOWORD and
HIWORD macros to decipher the return value as indicated in the example
below:

Example

void Function(void)
{
HANDLE hDb;

dwStatus = DbOpen(hParentWnd, ".\\", "sampledb.dbd", &hDb);
if(dwStatus)

{
nErrorCode = LOWORD(dwStatus);
nExtErrorCode = HIWORD(dwStatus);

// Decipher error code
.
.
.

}
}

The following list displays the possible error codes that can be returned and a
brief explanation of each.

Error Code Description

E_TESTDRIVE You are using a 'Test Drive'
version of CDB For Windows. The 'Test Drive'
version limits the number of records that can be
added to a database to 50.

E_WINALLOC A Windows GlobalAlloc or
GlobalLock error has occured. Most likely you are
out of global memory.

Page 126

Error Code Description

E_LOADMODULE A Windows LoadModule error has occured. The
HIWORD of the return value contains the specific
LoadModule error code. See the Windows SDK
documentation for more information about the
LoadModule return codes.

E_INVALIDCASE Contact Daytris technical support. An internal
switch statement does not contain a valid case.
You should never see this error code.

E_DOS An MS-DOS error has
occured. The HIWORD of the return value
contains the specific DOS error number. It is the
global 'errno' value. See ERRNO.H and/or the
Microsoft C documentation for more information.

E_NORECNAME The record name passed, szRecName, is not a
valid record type.

E_NOFLDNAME The field name passed, szFldName, is not a valid
field for the record.

E_INVALIDSET The owner and member
names passed to the function do not have a set
relationship between the two. To create a set
relatiionship between two records, use the
CONNECT keyword in the DDL file.

E_NOTAKEY The field name passed to
the function is not a key field in the record. Use
the KEY keyword in the DDL file to define key
fields.

E_NOTFOUND The record was not found.

E_NEXTGUESS The record was not found,
but the next closest match to the key value
passed was found. If a DbRecordFindByKey or
XDbRecordFindByKey call was made, currency is
set to this 'next guess' record. If a
DbRecordGetByKey or XDbRecordGetByKey call
was made, the 'next guess' record is returned.

E_NOCURRENT There is no current record for the record name
specified. e.g. This error value will be returned if
a DbRecordGetNext call is made before the
record requested has currency. One way to set
currency in this case would be to make a
DbRecordFindFirst call. There are a number of

Page 127

other cases where this error code could be
returned.

Page 128

Error Code Description

E_NONEXT The next record was not
found. e.g. DbRecordGetNext(...).

E_NOPREV The previous record was not
found. e.g. DbRecordGetPrevious(...).

E_NOOWNER This error can only occur
with a DbSetGetOwner call. If an owner record is
not found, this value is returned.

E_ALREADYOPEN This database has already been opened by
another application. A database cannot be
shared by different applications. Future versions
of CDB For Windows will support mult-application
access to the same database.

DDLP Error Messages
The following lists contain a description of error and warning messages that
may be encountered during the execution of the Data Definition Language
Parse utility (DDLP.EXE):

Error Number Description

100 Unexpected end of file
reached.

101 Unexpected token. DDLP
breaks the DDL file into tokens. A token can be a
bracket, keyword, semicolon, variable, constant,
etc. It combines the tokens and matches them
against predefined patterns. If a pattern has no
match, this error is returned.

102 Expecting semicolon.
103 Expecting "struct" keyword.

DDLP is expecting a structure definition to begin.
104 Expecting identifier. An

identifer can be a structure name or field name.
105 Expecting '{'. Expecting a

left brace.
106 Constant too big. A

constant is a number. The maximum constant
size allowed is 10 digits.

107 Structure already defined.
108 Invalid constant. The

interpreted value of the constant is zero.
109 Maximum size of a constant

is 65535.
110 Maximum size of a field is

65535.
Page 129

111 Maximum size of a record is
65535.

112 Connection already made to
'record name'. You cannot to the same record
more than once.

Page 130

Error Number Description

113 Record does not exist. This
error will occur when you try to CONNECT to a
record that is not defined within the DDL file.

114 Cannot connect structure to
itself.

115 Connect key field not found.
If you are ordering the sets using the 'CONNECT
record_name KEY key_field_name' convention,
the key_field_name is not found within the
record_name structure definition in the DDL file.

Warning Number Description

100 "prefix" not defined,
assuming "test". The PREFIX keyword was not
used to define the prefix used to derive database
file names. A "test" prefix is used as a default.

101 Prefix too long, truncating to
'identifier'. The maximum length of a PREFIX is 5
characters.

102 Identifier too long. The
maximum length of an identifier is 31 characters.
Extra characters will be truncated.

Page 131

